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Abstract

What predicts the behavior of Justices on the U.S. Supreme Court? Previous attempts
to develop predictive models of Supreme Court behavior have found success using either
(1) text data taken from oral argument proceedings, or (2) quantitative legal data. In
this article, we incorporate both data sets using an AdaBoost decision tree regressor, a
popular approach in machine learning that is relatively underused in political science.
As we show, our AdaBoosted approach substantially outperforms existing predictive
models of Supreme Court outcomes which use exclusively one data source or rely on
simpler modeling strategies. Substantively, this improved predictive success indicates
that combining both legal information and the information revealed by the Justices
themselves in the months leading to the decision provide the most information as to
Justices’ decision-making. We conclude the article by discussing possible applications
of the AdaBoost approach within the social sciences.
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1 Introduction

What predicts the behavior of Justices on the U.S. Supreme Court? The Supreme Court

reaches its decisions behind closed doors, but nonetheless rules on some of the most important

issues in American politics today—including LGBT rights, access to health care, and religious

liberties. This question also speaks to fundamental questions of what the law is and is thus

of significant scholarly and philosophical interest (Martin et al., 2004; Schauer, 1998). For

example, as Oliver Wendell Homes noted, “[t]he prophecies of what the courts will do in

fact, and nothing more pretentious, are what I mean by the law.” (Jr., 1897, pp. 460-61).

In this paper, we contribute to a growing literature predicting Supreme Court decision-

making by combining advances in machine learning with theoretical contributions from the

literature on judicial decisionmaking. We present an analysis using an AdaBoosted random

forest, a machine learning ensemble model that is well-suited to predicting political phe-

nomena. We combine this approach with a novel data set that includes information on the

cases heard by the Court alongside information revealed by the Justices themselves during

oral argument. This enables us to predict up to 75% of all Supreme Court case outcomes

accurately, an improvement over existing approaches1 (Martin and Quinn, 2002; Katz et al.,

2014; Nasrallah, 2014). Our contributions are therefore (1) to expand the predictive toolkit

of political scientists by incorporating techniques from machine learning, and (2) to expand

the range of information used by predictive models on Supreme Court decision making. In

so doing, we improve the accuracy of Supreme Court forecasting, an important exercise not

just for Court watchers and members of the public trying to gain certainty over an opaque

decision making process as well as for scholars of judicial decisionmaking.

1Predicting that the petitioner wins each case yields a 68% accuracy rate. We predict accurately as much
as seven percentage points above this baseline, with other established models predicting slightly more than
two percentage points above this baseline.
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2 Existing Predictive Models of Supreme Court Out-

comes

The most straightforward predictive algorithm for Supreme Court outcomes is well known

among Court watchers: the petitioner, or the party that appealed the case to the Supreme

Court, enjoys a favorable ruling approximately two-thirds of the time (Epstein et al., 2010).2

This may be because the Supreme Court is unwilling to agree to hear a case unless some

number of Justices are interested overturning the lower court ruling—in which case the logical

conclusion is that the Court is more likely than not to rule in favor of the petitioner. In

practice, this very simple predictive rule—one in which the petitioner wins every time—has

a surprisingly high predictive accuracy of 67.98% across Supreme Court cases since 2000 (see

Appendix A). This “petitioner wins” rule is the baseline to which we compare our model as

well others.

Surprisingly, many well-regarded attempts at prediction are unable to significantly out-

perform this standard, including predictions made by human experts (Ruger et al., 2004;

Martin et al., 2004). In a small comparison of 68 cases, Martin et al. recruited 83 law

professors and other Court experts to predict case outcomes in their areas of expertise prior

to oral argument proceedings. Among these 68 cases, the experts correctly predicted case

outcomes 59.1% of the time and correctly predicted Justices’ individual votes 67.9% of the

time.

Statistical models can, however, occasionally surpass the “petitioner wins” baseline. The

same Martin et al. study compared these expert predictions to a simple statistical model, a

classification tree using only six case-level covariates.3 That model correctly predicted 75%

2For our purposes, we operationalize a favorable ruling as at least a 5—4 majority in favor of one party,
usually the petitioner. We note that our approach is to examine Supreme Court outcomes as opposed to the
votes of individual Justices, in line with most papers in the literature and with the substantive interests of
many Court watchers, who tend to focus on individual Justices only insofar as their votes are predictive of
the eventual overall ruling.

3These were: circuit of origin, the issue area, the type of petitioner, the type of respondent, the ideological
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out of 68 cases, but only 66% of the individual votes. Although the statistical model does

beat the “petitioner wins” baseline, its findings are limited by the the small sample size of

the study (Martin et al., 2004, p. 765) and that it examined only one natural Court with

highly Justice-specific covariates, raising concerns of over-fitting (Katz et al., 2014).

Following in the steps of Martin et al., recent attempts have shown more reliable improve-

ments over the “petitioner wins” baseline. Among these is {Marshall}+, which incorporates

95 case-level covariates into a predictive model (Katz et al., 2014) and reports a predictive

accuracy of 69.7%. The algorithm operates using a variant of random forests called ex-

tremely randomized trees. These split candidate features randomly instead of along optimal

thresholds, thus enjoying a decreased variance in estimates at the cost of increased bias.

The second attempt is CourtCast, which uses three features derived from oral arguments

transcripts: (1) the number of words uttered by each Justice when talking to the parties,

(2) the sentiment of the words used, and (3) the number of times each Justice interrupts.

CourtCast reports a predictive accuracy of 70%. The CourtCast model is an unweighted

ensemble classifier consisting of random forests, support vector machines, and logistic regres-

sion. Ensemble methods, which generally consist of synthesizing the results from multiple

orthogonal classifiers into one prediction, mitigate the costs of their constituent methods but

can often reduce the benefits. Notably, they have a propensity to overfit small data sets.

3 AdaBoosted random forests and their Applicability

to Social Science Questions

To further improve on these approaches, we turn to an AdaBoosted random forest (Zhu

et al., 2009), which performs the best of several methods we test. Throughout this paper,

direction of the lower-court ruling, and whether the case raised a constitutional issue. Experts were free to
consider any information they wished (Martin et al., 2004, p. 762).
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we measure model performance through 10-fold cross-validation, which captures the model’s

ability to predict withheld samples of the observed data (Arlot et al., 2010).

Decision Trees in Social Science. With notable exceptions (e.g., Muchlinski et al., 2016;

Green and Kern, 2012; Kastellec, 2010), tree-based models are rarely used in political science;

they are standard, however, in machine learning and statistics. Tree-based models are a

flexible, nonparametric (or semiparametric) class of methods designed to incorporate flexible

functional forms, to avoid parametric assumptions of linear models, and to perform vigorous

variable selection while avoiding potential problems of overfitting. The simplest kinds of

tree-based models are single trees, which partition the sample space and then generate a

predicted value to each region.

Here, we supplement random forests with boosting. Boosting involves creating trees

sequentially, with each subsequent tree grown on re-weighted training data. As Montgomery

and Olivella (2016) explain, each new tree then “improves upon the predictive power of the

existing ensemble.” For our boosting algorithm, we use AdaBoost (Freund and Schapire,

1997). The base classifier relies on “weak learners,” or decision rubrics that perform only

slightly better than chance: leveraging many weak learner classifiers is often better than

averaging only a few stronger classifiers. AdaBoosting operates by applying this algorithm

to a training set, giving each observation equal weight. In the next iteration, AdaBoost will

assign more weight to those units which were incorrectly classified in the previous iteration;

that is, those units that are misclassified in one round will have a higher probability of being

selected as part of the training set in the next round. The algorithm specifically focuses on

those units that are hard to classify—an approach that is particularly well suited for social

science problems, which may frequently involve outliers.

AdaBoosting has good asymptotic properties in improving predictive accuracy, especially

when there are many features that each only contribute a small predictive advantage. Indeed,
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looking at the Supreme Court, a quirk of predicting its rulings is that, although baseline

accuracy tends to be high, the predictive capacity of any one variable is quite small, leaving

relatively little room for improvements. This is a situation with many parallels in the social

sciences. In comparative politics, for example, predicting the advent of civil wars has a very

high baseline accuracy since there are very few wars, but each additional predictor adds

relatively little information (?). In American politics, to use another example, changes in

which party controls the U.S. Presidency are often summarized by the “bread and peace”

model: the incumbent party wins when the economy is growing, except during unpopular

wars (?). This produces a remarkably high baseline accuracy, on top of which other variables

(such as campaign effects, candidate effects, or demographic changes) add seemingly little

(?). AdaBoosting is well suited for these problems. For additional description of the costs

and benefits of Adaboosted random forests, see Appendix A.

Application of AdaBoosting to the Supreme Court. We first find the maximally pre-

dictive single decision tree using methods as implemented in the Python library scikit-learn

(Pedregosa et al., 2011). (An example of such a tree is provided in Figure 1.) We then use

that single tree to generate predictions for every Supreme Court case in our sample, indi-

cating the probability that the petitioner or the respondent will win. Next, we re-weight

our data set proportionally to the size of each observation’s fitted residual according to the

predictions of that single tree. In a case where that decision tree predicts that the peti-

tioner will win with 84% probability and the petitioner did win, that observation’s weight

is proportional to 16%. If instead that case’s outcome was that the respondent won, the

weight would be proportional to 84%. Then we use that weighted data set to generate the

next decision tree, calculate that single tree’s fitted residuals, and re-weight. We repeat this

procedure for 10,000 iterations, storing each intermediate model. To predict the results of

new cases outside of our training set, we generate predicted values using each of the 10,000
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Figure 1: Example of a decision tree trained to predict U.S. Supreme Court outcomes. Each
box represents a feature split, indicated by the first text row in each box. (These feature
splits are described in Appendix B.) Bluer nodes are ones in which the petitioner is predicted
to win; the more orange the box, the higher probability the respondent wins. Gini, short
for Gini impurity, indicates the probability that a randomly chosen observation would be
incorrectly classified at that node.

intermediate models and average all 10,000 predictions together.

4 Supreme Court Data

Both {Marshall}+ and CourtCast enjoy predictive gains over the “petitioner wins” baseline,

though both draw on different data sources. {Marshall}+ draws on case covariates, while

CourtCast relies on oral argument transcripts. This suggests that both data sets contain

variable predictive information.

We train our AdaBoosted model using both types of data. The first data source is

case-level covariates, which come from the Supreme Court Database (Spaeth et al., 2015).

These data include a case-specific variables capturing the procedural posture of the case, the

issues involved, the identities of the parties, etc. The second data source is statements made

by the Justices during oral arguments. Existing scholarship suggests that oral arguments

represent an important opportunity for the Justices to gather information from attorneys
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and stake out potential positions (Johnson et al., 2006). We draw on textual data from

the Supreme Court’s oral argument transcripts, which we collect from the Oyez Project

(Goldman, 2002). For each Justice, we compute the following features: (1) questions asked

to the petitioner, (2) questions asked to the respondent, (3) words spoken to the petitioner,

(4) words spoken to the respondent, (5) interruptions of the petitioner, and (6) interruptions

of the respondent.4 We transform the raw oral arguments data in two ways. First, we create

dichotomous indicators for each Justice indicating if that Justice asked more questions,

spoke more words, or interrupted more frequently the petitioner or the respondent attorney

(27 total variables). Second, we calculate for each Justice the appropriate ratios of speech

targeted toward each attorney for words spoken, questions asked, and interruptions.5 We

find that, generally, the most predictive oral argument-derived features are ratios.

5 Results and Comparisons to Other Approaches

Below, we present predictions based on our model, {Marshall}+, CourtCast, a naive random

forest, and the “petitioner always wins” rule, which we take as our baseline. We evaluate

all models using an identical ten-fold cross-validation protocol (Efron and Tibshirani, 1997).

For a data set with n observations, we first partition the data into 10 subsets of size n
10

. This

algorithm first trains a model on partitions 2 through 10, then predicts the outcome measure

for the first subset and records the number of correct predictions. Next, a model is trained

on subsets 3 through 10 and 1, and then a prediction is generated for subset 2, recording its

accuracy. This is repeated for all 10 subsets. The total percentage of correct predictions is

treated as the model’s out-of-sample predictive accuracy. For a longer discussion of K-fold

cross-validation, see Appendix E.

4For consistency in comparisons, we compute these measures identically to the CourtCast model.
5For example, for interruptions, we calculate for each Justice the ratio of times the Justice interrupted

the liberal litigator versus the conservative litigator. If Scalia interrupted the liberal litigator six times but
only interrupted the conservative litigator two times, this value would be (6/8)/(2/8) = 3
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Figure 2: Cross-Validation Accuracy for (1) KKS, (2) {Marshall}+, (3) a naive random
forest, (4) the “petitioner always wins” baseline, and (5) CourtCast, across three different
training sets. For {Marshall}+ and CourtCast, black dots indicate the original data set
on which those models were trained. Regardless of training data set, KKS outperforms all
previous models.

In Table 1 and Figure 2, we compare results from our model (“KKS”) to the others.

For each model, we indicate the data set used, the cross-validation accuracy, and the im-

provement above the baseline accuracy. Models using only oral argument data slightly

outperform models using only case-level covariates from the Supreme Court Database, but

the KKS model incorporating both oral arguments transcripts data and case-level covari-

ates substantially outperforms the rest. Note that CourtCast’s cross-validation accuracy

using its original data set is 64.99%, substantially lower than their self-reported accuracy
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Model Data Accuracy Accuracy - Baseline

Baseline None 67.98% 0%
{Marshall}+ SCDB 69.70% 1.72%
CourtCast oral argument 70.00% 2.02%
KKS SCDB 71.34% 3.36%
KKS oral argument 72.02% 4.04%
KKS Both 74.04% 6.06%

Table 1: Accuracy for (1) the “petitioner always wins” baseline, (2) {Marshall}+, (3) Court-
Cast, and (4) KKS. Data refers to the case-level covariates from the Supreme Court Database
(“SCDB”), transcript data from the oral arguments (“oral argument”), or both. KKS model
using the full covariate set triples the added accuracy of the next best model. The least
predictive KKS model enjoys a 50 percentage point increase in added accuracy over the next
best model.

as calculated using a single train-test split. While this does not suggest over-reporting by

CourtCast, we prefer ten-fold cross-validation over a single train-test split as a more robust

measure of model accuracy (Arlot et al., 2010). Both {Marshall}+ and CourtCast perform

best using the joint data set; both perform second-best on the single data set on which they

were originally designed.

Among models using only case-level covariates from the Supreme Court Database, the

KKS model reaches predictive accuracy of 71.34%, compared to the accuracy {Marshall}+,

which is 69.7%. While {Marshall}+ beats the baseline by 1.72 percentage points, the KKS

model using the same data surpasses baseline accuracy by 3.34 percentage points, almost

double the added predictive value. Similarly, among the models using only oral argument

data, the KKS model reaches predictive accuracy of 72.02%, compared to the CourtCast

accuracy of 70.0%. CourtCast beats the baseline by 2.02 percentage points, the comparable

KKS model surpasses baseline accuracy by 4.04 percentage points, exactly double the added

predictive value. When the KKS model is trained on both data sets, its accuracy increases

to 74.04%, or 6.06 percentage points above the baseline, a three-fold increase over the best

current model. Since we calculate these accuracy statistics using 10-fold cross-validation,

they include all Supreme Court cases from 2005 to 2015.
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Margin Accuracy Accuracy - Baseline

5-4 66% 0%
6-3 74% 8%
7-2 75% 9%
8-1 82% 16%
9-0 77% 11%

Table 2: KKS model accuracy by decision margin.

There is notable heterogeneity in our prediction accuracy (Table 2). Narrow 5-4 decisions

are more difficult to predict, and wider margins are easier to predict. Our accuracy for 5-4

cases is at the baseline, at 66%. We predict 74% of 6-3 cases correctly, 75% of 7-2 cases

correctly, 82% of 8-1 cases correctly, and 77% of 9-0 cases correctly.

6 Discussion and Conclusion

In this paper, we have made two specific contributions. First, we have contributed to,

and improved on, the literature on Supreme Court prediction. The Supreme Court is the

most reclusive of the three branches of the federal government; at the same time, the Court

adjudicates some of the most important and contentious policy issues of the day, including

important rulings on health care, campaign finance reform, and affirmative action. Increasing

the predictive accuracy of forecasting models not only allows scholars to understand how this

important branch of government operates, but also, we believe, allows researchers to more

credibly assess which way these significant policy rulings will go.

Second, we have provided an overview of the AdaBoost regression forest, a technique

that, although frequently used in machine learning, is novel within the social sciences. This

approach is particularly appropriate for many social science questions, not just Supreme

Court forecasting, owing to its robustness to small sample sizes and its careful treatment of

very weakly predictive covariates. Such problems may include predicting civil wars, predict-

ing when strong incumbents may be successfully challenged, and predicting public opinion
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in the face of floor or ceiling effects. An additional uses may be in calculating propensity

scores for matching in the presence of many covariates.
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